
Advanced
Graphics

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk
Supported in part by Google UK, Ltd

“The Shader knows…”

What is… the shader?

World space

Viewing space

3D screen space

2D display space

Local space

Last lecture…

World space

Viewing space

3D screen space

Process vertices

Local space

Clipping, projection, backface culling

Process pixels

2D display space – plot pixels

Closer to the truth (but still a
terrible oversimplification)

What is… the shader?

World space

Viewing space

3D screen space

2D display space

Local space

Last lecture…

World space

Viewing space

3D screen space

Local space

Clipping, projection, backface culling

2D display space – plot pixels

Closer to the truth (but still a
terrible oversimplification)

Process vertices

Ex: computing diffuse shading
color per vertex; transforming
vertex position; transforming
texture co-ordinates

Process pixels
Ex: interpolating texture
coordinates across the polygon;
interpolating the normal for
specular lighting; textured
normal-mapping

“Wouldn’t it
be great if
the user
could install
their own
code into the
hardware to
choose these
effects?”

What is… the shader?

The next generation:
Introduce shaders, programmable logical units on

the GPU which can replace the “fixed”
functionality of OpenGL with user-generated code.

By installing custom shaders, the user can now
completely override the existing
implementation of core per-vertex and per-
pixel behavior.

Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and Radeon (bottom)

What are we targeting?

OpenGL shaders give the
user control over each
vertex and each fragment
(each pixel or partial
pixel) interpolated
between vertices.

After vertices are processed, polygons are rasterized. During
rasterization, values like position, color, depth, and others are
interpolated across the polygon. The interpolated values are passed to
each pixel fragment.

What can you override?

Per vertex:
●Vertex transformation
●Normal transformation and
normalization
●Texture coordinate generation
●Texture coordinate
transformation
●Lighting
●Color material application

Per fragment (pixel):
●Operations on interpolated
values
●Texture access
●Texture application
●Fog
●Color summation
●Optionally:

● Pixel zoom
● Scale and bias
● Color table lookup
● Convolution

Think parallel

Shaders are compiled from within your code
● They used to be written in assembler
● Today they’re written in high-level languages (☺)

They execute on the GPU
GPUs typically have multiple processing units
That means that multiple shaders execute in parallel

● We’re moving away from the purely-linear flow of early
“C” programming models

Least advanced; most
portable and supported;
topic of this lecture.

What’re we talking here?

There are several popular languages for
describing shaders, such as:

● HLSL, the High Level Shading Language
● Author: Microsoft
● DirectX 8+

● Cg
● Author: nvidia

● GLSL, the OpenGL Shading Language
● Author: the Khronos Group, a self-sponsored group of

industry affiliates (ATI, 3DLabs, etc)

OpenGL programmable processors (not to scale)

Figure 2.1, p. 39, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.

Vertex processor – inputs and outputs

Color
Normal
Position
Texture coord
etc…

Texture data

Modelview matrix
Material
Lighting
etc…

Custom variables

Color
Position

Custom variables

Vertex
Processor

Per-vertex attributes

Fragment processor – inputs and outputs

Color
Texture coords
Fragment coords
Front facing

Texture data

Modelview matrix
Material
Lighting
etc…

Custom variables

Fragment color
Fragment depth

FragmentP
rocessor

How do the shaders communicate?

There are three types of shader parameter in
GLSL:
Uniform parameters

● Set throughout execution
● Ex: surface color

Attribute parameters
● Set per vertex
● Ex: local tangent

Varying parameters
● Passed from vertex processor to

fragment processor
● Ex: transformed normal Fragment

Processor

Vertex
Processor

Attributes

Uniform
params Varying

params

What happens when you install a shader?

All the fixed functionality (see slide three) is
overridden. It’s up to you to replace it.

● You’ll have to transform each vertex into viewing
coordinates manually.

● You’ll have to light each vertex manually.
● You’ll have to apply the current interpolated color to each

fragment manually.
The installed shader replaces all OpenGL fixed
functionality for all renders until you remove it.

Shader gallery II

Above: Kevin Boulanger (PhD thesis,
“Real-Time Realistic Rendering of Nature
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)

Shader sample one – ambient lighting
// Vertex Shader
void main() {
 gl_Position =
 gl_ModelViewProjectionMatrix * gl_Vertex;
}

// Fragment Shader
void main() {
 gl_FragColor = vec4(0.2, 0.6, 0.8, 1);
}

Shader sample one – ambient lighting

Shader sample one – ambient lighting

Notice the C-style syntax
● void main() { … }

The vertex shader uses two standard inputs, gl_Vertex and
the model-view-projection matrix; and one standard output,
gl_Position.

● The line
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

applies the model-view-projection matrix to calculate the
correct vertex position in perspective coordinates.

The fragment shader applies basic ambient lighting, setting its
one standard output, gl_FragColor, to a fixed value.

Shader sample two – diffuse lighting
// Vertex Shader

varying vec3 Norm;
varying vec3 ToLight;

void main()
{
 gl_Position =
 gl_ModelViewProjectionMatrix
* gl_Vertex;
 Norm =
 gl_NormalMatrix * gl_Normal;
 ToLight = vec3(
 gl_LightSource[0].position -
(gl_ModelViewMatrix *
 gl_Vertex));
}

// Fragment Shader

varying vec3 Norm;
varying vec3 ToLight;

void main()
{
 const vec3 DiffuseColor =
vec3(0.2, 0.6, 0.8);
 float diff = clamp(dot
(normalize(Norm), normalize
(ToLight)), 0.0, 1.0);

 gl_FragColor = vec4
(DiffuseColor * diff, 1.0);
}

Shader sample two – diffuse lighting

Shader sample two – diffuse lighting

This examples uses varying parameters to pass info
from the vertex shader to the fragment shader.

● The varying parameters Norm and ToLight are
automatically linearly interpolated between vertices across
every polygon.

● This represents the normal at that exact point on the surface.
● The exact diffuse illumination is calculated from the local

normal.
● This is the Phong shading technique (usually seen for specular

highlights) applied to diffuse lighting.

Shader sample two – diffuse lighting
Notice the different matrix transforms used in this example:
gl_Position = gl_ModelViewProjectionMatrix *
gl_Vertex;
Norm = gl_NormalMatrix * gl_Normal;
ToLight = vec3(gl_LightSource[0].position -
(gl_ModelViewMatrix * gl_Vertex));
The gl_ModelViewProjectionMatrix transforms a vertex from
local coordinates to perspective coordinates for display, whereas the
gl_ModelViewMatrix transforms a point from local coordinates to
eye coordinates. We use eye coordinates because lights are (usually)
defined in eye coordinates.
The gl_NormalMatrix transforms a normal from local coordinates to
eye coordinates; it holds the inverse of the transpose of the upper 3x3
submatrix of the model-view transform.

GLSL – design goals

GLSL was designed with the following in mind:
● Work well with OpenGL

● Shaders should be optional extras, not required.
● Fit into the design model of “set the state first, then render the data in

the context of the state”
● Support upcoming flexibility
● Be hardware-independent

● The GLSL folks, as a broad consortium, are far more invested in
hardware-independence than, say, nvidia.

● That said, they’ve only kinda nailed it: I get different compiler
behavior and different crash-handling between my high-end home
nVidia chip and my laptop Intel x3100.

● Support inherent parallelization
● Keep it streamlined, small and simple

GLSL

The language design in GLSL is strongly based on
ANSI C, with some C++ added.

● There is a preprocessor--#define, etc!
● Basic types: int, float, bool

● No double-precision float
● Vectors and matrices are standard: vec2, mat2 = 2x2; vec3,
mat3 = 3x3; vec4, mat4 = 4x4

● Texture samplers: sampler1D, sampler2D, etc are used to
sample multidemensional textures

● New instances are built with constructors, a la C++
● Functions can be declared before they are defined, and

operator overloading is supported.

GLSL

Some differences from C/C++:
● No pointers, strings, chars; no unions, enums; no bytes, shorts,

longs; no unsigned. No switch() statements.
● There is no implicit casting (type promotion):

float foo = 1;
fails because you can’t implicitly cast int to float.

● Explicit type casts are done by constructor:
vec3 foo = vec3(1.0, 2.0, 3.0);
vec2 bar = vec2(foo); // Drops foo.z

Function parameters are labeled as in (default), out, or inout.
● Functions are called by value-return, meaning that values are

copied into and out of parameters at the start and end of calls.

Program

The GLSL API
To install and use a shader in OpenGL:

● Create one or more empty shader objects with
glCreateShader.

● Load source code, in text, into the shader with
glShaderSource.

● Compile the shader with glCompileShader.
○ The compiler cannot detect every program that would cause a

crash. (And if you can prove otherwise, see me after class.)
● Create an empty program object with glCreateProgram.
● Bind your shaders to the program with glAttachShader.
● Link the program (ahh, the ghost of C!) with

glLinkProgram.
● Register your program for use with glUseProgram.

Vertex
shader

Fragment
shader

Compiler

OpenGL

Linker

Shader sample three – Gooch shading
// From the Orange Book

varying float NdotL;
varying vec3 ReflectVec;
varying vec3 ViewVec;

void main () {
 vec3 ecPos = vec3(gl_ModelViewMatrix *
gl_Vertex);
 vec3 tnorm = normalize(gl_NormalMatrix *
gl_Normal);
 vec3 lightVec = normalize(gl_LightSource[0].
position.xyz - ecPos);

 ReflectVec = normalize(reflect(-lightVec,
tnorm));
 ViewVec = normalize(-ecPos);
 NdotL = (dot(lightVec, tnorm) + 1.0) *
0.5;

 gl_Position = ftransform();

 gl_FrontColor = vec4(vec3(0.75), 1.0);
 gl_BackColor = vec4(0.0);
}

vec3 SurfaceColor = vec3(0.75, 0.75, 0.75);
vec3 WarmColor = vec3(0.1, 0.4, 0.8);
vec3 CoolColor = vec3(0.6, 0.0, 0.0);
float DiffuseWarm = 0.45;
float DiffuseCool = 0.045;

varying float NdotL;
varying vec3 ReflectVec;
varying vec3 ViewVec;

void main() {
 vec3 kcool = min(CoolColor + DiffuseCool * vec3
(gl_Color), 1.0);
 vec3 kwarm = min(WarmColor + DiffuseWarm * vec3
(gl_Color), 1.0);
 vec3 kfinal = mix(kcool, kwarm, NdotL) *
gl_Color.a;

 vec3 nreflect = normalize(ReflectVec);
 vec3 nview = normalize(ViewVec);

 float spec = max(dot(nreflect, nview), 0.0);
 spec = pow(spec, 32.0);

 gl_FragColor = vec4(min(kfinal + spec, 1.0), 1.0);
}

Shader sample three – Gooch shading

Shader sample three – Gooch shading

Image source: “A
Non-Photorealistic
Lighting Model For
Automatic Technical
Illustration”, Gooch,
Gooch, Shirley and
Cohen (1998).
Compare the Gooch
shader, above, to the
Phong shader (right).

Gooch shading is not a shader technique per se.
It was designed by Amy and Bruce Gooch to replace
photorealistic lighting with a lighting model that
highlights structural and contextual data.

●They use the diffuse term of the conventional
lighting equation to choose a map between ‘cool’ and
‘warm’ colors.

●This is in contrast to conventional illumination where
diffuse lighting simply scales the underlying surface
color.

●This, combined with edge-highlighting through a
second renderer pass, creates models which look more
like engineering schematic diagrams.

Shader sample three – Gooch shading
In the vertex shader source, notice the use of the built-in ability to
distinguish front faces from back faces:

gl_FrontColor = vec4(vec3(0.75), 1.0);
gl_BackColor = vec4(0.0);
This supports distinguishing front faces (which should be shaded

smoothly) from the edges of back faces (which will be drawn in heavy
black.)
In the fragment shader source, this is used to choose the weighted diffuse
color by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL) * gl_Color.
a;
Here mix() is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor (‘t’ in the
interpolation) is NdotL, the diffuse lighting value.

Antialiasing on the GPU

Hardware antialiasing can dramatically
improve image quality.

● The naïve approach is simply to supersample
the image

● This is easier in shaders than it is in standard
software

● But it really just postpones the problem.
Several GPU-based antialiasing solutions
have been found.

● Eric Chan published an elegant polygon-based
antialiasing approach in 2004 which uses the
GPU to prefilter the edges of a model and then
blends the filtered edges into the original
polygonal surface. (See figures at right.)

Antialiasing on the GPU
One clever form of antialiasing is adaptive analytic
prefiltering.

●The precision with which an edge is rendered to the screen is
dynamically refined based on the rate at which the function defining
the edge is changing with respect to the surrounding pixels on the
screen.
This is supported in the shader language by the methods
dFdx(F) and dFdy(F).

●These methods return the derivative with respect to X and Y of some
variable F.

●These are commonly used in choosing the filter width for antialiasing
procedural textures.

(A) Jagged lines visible in the box function of the procedural stripe texture
(B) Fixed-width averaging blends adjacent samples in texture space; aliasing still occurs at the
top, where adjacency in texture space does not align with adjacency in pixel space.
(C) Adaptive analytic prefiltering smoothly samples both areas.
Image source: Figure 17.4, p. 440, OpenGL Shading Language, Second Edition, Randi Rost,
Addison Wesley, 2006. Digital image scanned by Google Books.
Original image by Bert Freudenberg, University of Magdeburg, 2002.

Particle systems on the GPU
Shaders extend the use of texture memory
dramatically. Shaders can write to texture
memory, and textures are no longer limited
to being a two-dimensional plane of RGB
(A).

● A particle systems can be represented
by storing a position and velocity for
every particle.

● A fragment shader can render a
particle system entirely in hardware
by using texture memory to store and
evolve particle data.

Image by Michael Short

Particle systems with shaders

Slide 17 of Lutz Latta’s “Everything About
Particle Effects”, delivered at the Game
Developers Conference ’07 (San Francisco).

Subdivision surfaces on the GPU

Several techniques now exist for doing
subdivision surface on the GPU.

● An early approach by Boubekeur and
Schlick used a predefined ‘generic’
model to subdivide each triangle, then
applied a procedural distortion map to
the positions of the new vertices.

● Later work, such as Castaño’s at nVidia,
builds a complete tessellation pipeline in
hardware.

Castaño (2008)

Boubekeur and Schlick (2005)

Ongoing development
Since 2007 nvidia has supported
geometry shaders, though
standardized acceptance took a
while.
Today most shader languages
support geometry shaders, which
run after the vertex shader and can
generate new primitives (vertices,
vertex strips, etc.)
Support has been standardized
since DirectX 10 and OpenGL 3.2.

CPU vs GPU – an object demonstration

“NVIDIA: Adam and Jamie explain parallel processing on the GPU”
http://www.youtube.com/watch?v=ZrJeYFxpUyQ

http://www.youtube.com/watch?v=ZrJeYFxpUyQ
http://www.youtube.com/watch?v=ZrJeYFxpUyQ
http://www.youtube.com/watch?v=ZrJeYFxpUyQ

Recap
● Shaders give a powerful, extensible mechanism for programming the vertex and pixel

processing stages of the GPU pipeline.
● GLSL is a portable, multiplatform C-like language which is compiled at run-time and

linked into an executable shader program.
● Shaders can be used for a long list of effects, from procedural geometry and non-

photorealistic lighting to advanced textures, fog, shadows, raycasting, and visual
effects; in fact, many of the topics covered in this course!

(The first 21 images returned by Google Image Search for “shaders”.)

